TWM

Brilliant Disguise: Light, Matter and the Zero-Point Field
by Bernard Haisch
[continued from page 01]
The discovery that my colleague first made in 1992 also has to do with a force that the zero-point field generates, which takes us back to F=ma, Newton’s famous equation of motion. Newton — and all physicists since — have assumed that all matter possesses an innate mass, the m in Newton's equation. The mass of an object is a measure of its inertia, its resistance to acceleration, the a. The equation of motion, known as Newton's second law, states that if you apply a force, F, to an object you will get an acceleration, a — but the more mass, m, the object possesses, the less acceleration you will get for a given force. In other words, the force it takes to accelerate a hockey puck to a high speed will barely budge a car. For any given force, F, if m goes up, a goes down, and vice versa.

Why is this? What gave matter this property of possessing inertial mass? Physicists sometimes talk about a concept known as "Mach's Principle" but all that does is to establish a certain relationship between gravity and inertia. It doesn’t really say how all material objects acquire mass. In fact, the work that Rueda, I and another colleague, Hal Puthoff, have since done indicate that mass is, in effect, an illusion. Matter resists acceleration not because it possesses some innate thing called mass, but because the zero-point field exerts a force whenever acceleration takes place. To put it in somewhat metaphysical terms, there exists a background sea of quantum light filling the universe, and that light generates a force that opposes acceleration when you push on any material object. That is why matter seems to be the solid, stable stuff that we and our world are made of.

Saying this is one thing. Proving it scientifically is another. It took a year and a half of calculating and writing and thinking, over and over again, to refine both the ideas themselves and the presentation to the point of publication in a professional research journal. On an academic timescale this was actually pretty quick, and we were able to publish in what is widely regarded as the world's leading physics journal, the Physical Review, in February 1994. To top it off, Science and Scientific American ran stories on our new inertia hypothesis. We waited for some reaction. Would other scientists prove us right or prove us wrong? Neither happened.

At that point in my career I was already a fairly well-established scientist, being a principal investigator on NASA research grants, serving as an associate editor of the Astrophysical Journal, and having many dozens of publications in the parallel field of astrophysics. In retrospect, my experience should have warned me that we had ventured into dangerous theoretical waters, that we were going to be left on our own to sink or swim. Indeed, I would probably have taken the same wait-and-see attitude myself had I been on the outside looking in.

An alternative to having other scientists replicate your work and prove that you are right is to get the same result yourself using a completely different approach. I wrote a research proposal to NASA and Alfonso buried himself in new calculations. We got funding and we got results. In 1998, we published two new papers that again showed that the inertia of matter could be traced back to the zero-point field. And not only was the approach in those papers completely different than in the 1994 paper, but the mathematics was simpler while the physics was more complete: a most desireable combination. What’s more, the original analysis had used Newtonian classical physics; the new analysis used Einsteinian relativistic physics.

As encouraged as I am, it is still too early to say whether history will prove us right or wrong. But if we are right, then "Let there be light" is indeed a very profound statement, as one might expect of its purported author. The solid, stable world of matter appears to be sustained at every instant by an underlying sea of quantum light.

But let's take this even one step further. If it is the underlying realm of light that is the fundamental reality propping up our physical universe, let us ask ourselves how the universe of space and time would appear from the perspective of a beam of light. The laws of relativity are clear on this point. If you could ride a beam of light as an observer, all of space would shrink to a point, and all of time would collapse to an instant. In the reference frame of light, there is no space and time. If we look up at the Andromeda galaxy in the night sky, we see light that from our point of view took 2 million years to traverse that vast distance of space. But to a beam of light radiating from some star in the Andromeda galaxy, the transmission from its point of origin to our eye was instantaneous. 

There must be a deeper meaning in these physical facts, a deeper truth about the simultaneous interconnection of all things. It beckons us forward in our search for a better, truer understanding of the nature of the universe, of the origins of space and time — those "illusions" that yet feel so real to us.

Bernhard Haisch, staff physicist at the Lockheed Martin Solar & Astrophysics Laboratory in Palo Alto, California, is a scientific editor of The Astrophysical Journal and editor-in-chief of the Journal of Scientific Exploration.

Page 01

© 2001 Science & Spirit Magazine. All rights reserved.


BACK