TWM

Weather as a Force Multiplier: Owning the Weather in 2025
Chapter 2
Required Capability - Why Would We Want to Mess with the Weather?  [Abridged]

According to Gen Gordon Sullivan, former Army chief of staff, "As we leap technology into the 21st century, we will be able to see the enemy day or night, in any weather- and go after him relentlessly."3A global, precise, real-time, robust, systematic weather-modification capability would provide war-fighting CINCs with a powerful force multiplier to achieve military objectives. Since weather will be common to all possible futures, a weather-modification capability would be universally applicable and have utility across the entire spectrum of conflict. The capability of influencing the weather even on a small scale could change it from a force degrader to a force multiplier.

In 1957, the president's advisory committee on weather control explicitly recognized the military potential of weather-modification, warning in their report that it could become a more important weapon than the atom bomb.5

However, controversy since 1947 concerning the possible legal consequences arising from the deliberate alteration of large storm systems meant that little future experimentation could be conducted on storms which had the potential to reach land.6 In 1977, the UN General Assembly adopted a resolution prohibiting the hostile use of environmental modification techniques.The resulting "Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Technique (ENMOD)" committed the signatories to refrain from any military or other hostile use of weather-modification which could result in widespread, long-lasting, or severe effects.7 While these two events have not halted the pursuit of weather-modification research, they have significantly inhibited its pace and the development of associated technologies, while producing a primary focus on suppressive versus intensification activities.

The influence of the weather on military operations has long been recognized. During World War II, Eisenhower said, [i]n Europe bad weather is the worst enemy of the air [operations]... Bad weather is obviously the enemy of the side that seeks to launch projects requiring good weather, or of the side possessing great assets, such as strong air forces, which depend upon good weather for effective operations. If really bad weather should endure permanently, the Nazi would need nothing else to defend the Normandy coast!8

The impact of weather has also been important in more recent military operations. A significant number of the air sorties into Tuzla during the initial deployment supporting the Bosnian peace operation aborted due to weather. During Operation Desert Storm, ...Over 50 percent of the F-117 sorties weather aborted over their targets and A-10s only flew 75 of 200 scheduled close air support (CAS) missions due to low cloud cover during the first two days of the campaign.10 Weather-modification clearly has potential for military use at the operational level to reduce the elements of fog and friction for friendly operations and to significantly increase them for the enemy.

What Do We Mean by "Weather-modification"?

Today, weather-modification is the alteration of weather phenomena over a limited area for a limited period of time.11Within the next three decades, the concept of weather-modification could expand to include the ability to shape weather patterns by influencing their determining factors.12

Technologically, we must have a solid understanding of the variables that affect weather. We must be able to model the dynamics of their relationships, map the possible results of their interactions, measure their actual real-time values, and influence their values to achieve a desired outcome. Society will have to provide the resources and legal basis for a mature capability to develop. How could all of this happen? The following notional scenario postulates how weather-modification might become both technically feasible and socially desirable by 2025.

Between now and 2005, technological advances in meteorology and the demand for more precise weather information by global businesses will lead to the successful identification and parameterization of the major variables that affect weather. By 2015, advances in computational capability, modeling techniques, and atmospheric information tracking will produce a highly accurate and reliable weather prediction capability, validated against real-world weather. In the following decade, population densities put pressure on the worldwide availability and cost of food and usable water. Massive life and property losses associated with natural weather disasters become increasingly unacceptable. These pressures prompt governments and/or other organizations who are able to capitalize on the technological advances of the previous 20 years to pursue a highly accurate and reasonably precise weather-modification capability. The increasing urgency to realize the benefits of this capability stimulates laws and treaties, and some unilateral actions, making the risks required to validate and refine it acceptable. By 2025, the world, or parts of it, are able to shape local weather patterns by influencing the factors that affect climate, precipitation, storms and their effects, fog, and near space. These highly accurate and reasonably precise civil applications of weather-modification technology have obvious military implications. This is particularly true for aerospace forces, for while weather may affect all mediums of operation, it operates in ours.

In the broadest sense, weather-modification can be divided into two major categories: suppression and intensification of weather patterns. In extreme cases, it might involve the creation of completely new weather patterns, attenuation or control of severe storms, or even alteration of global climate on a far-reaching and/or long-lasting scale. In the mildest and least controversial cases it may consist of inducing or suppressing precipitation, clouds, or fog for short times over a small-scale region. Other low-intensity applications might include the alteration and/or use of near space as a medium to enhance communications, disrupt active or passive sensing, or other purposes. In conducting the research for this study, the broadest possible interpretation of weather-modification was initially embraced, so that the widest range of opportunities available for our military in 2025 were thoughtfully considered.

Extreme and controversial examples of weather modification - creation of made-to-order weather, large-scale climate modification, creation and/or control (or "steering") of severe storms, etc.- were researched as part of this study but receive only brief mention here because, in the authors' judgment, the technical obstacles preventing their application appear insurmountable within 30 years.14 If this were not the case, such applications would have been included in this report as potential military options, despite their controversial and potentially malevolent nature and their inconsistency with standing UN agreements to which the US is a signatory. 

Back to Air Force 2025
Last updated: 11 December 1996


BACK